
COMP4920 Senior Design Project II, Spring 2025
Advisor: Assoc. Prof. Dr. Ahmet Hasan Koltuksuz

GEMBOS:Global Encrypted Mobile-Based
Obscured SMS Application

High Level Design
Design Specifications Document

Revision 2.0
20.04.2025

By:
Berker Vergi, 21070001202

Giray Aksakal, 21070001030

Revision History

Revision Date Explanation

1.0 20.01.2025 Initial high level design

2.0 20.04.2025 Added GEMBOS Software System Detailed Design

GEMBOS DSD-v2.0	 	 	 1

Table of Contents

Revision History	 1
Table of Contents	 2
1. Introduction	 3
2. GEMBOS System Design	 4
3. GEMBOS Software Subsystem Design	 6
3.1. GEMBOS Software System Architecture	 6
3.2. GEMBOS Software System Structure	 9
3.3. GEMBOS Software System Environment	 19
4. GEMBOS Software System Detailed Design:	 21
4.0.1 Application Lifecycle Overview	 21
4.0.1.1 Android Lifecycle Methods	 21
4.0.1.2 iOS Lifecycle Methods	 21
4.1 Main Module: SplashScreen	 21
4.2 Subsystem S1: User Management	 21
4.3 Subsystem S2: Messaging	 21
4.4 Subsystem S3: Key and Encryption Handling	 21
4.5 Subsystem S4: Notifications and Sync	 21
5. Testing Design	 21
References	 23

GEMBOS DSD-v2.0	 	 	 2

1. Introduction

Purpose:

 The purpose of this project is to design and implement the GEMBOS application as a secure, distributed
messaging system, building upon the requirements outlined in the GEMBOS Requirements Specification
Document (RSD). GEMBOS is designed to address the challenges of secure communication, offline support,
and real-time synchronization in a distributed environment. This Detailed Software Design (DSD) document
provides a comprehensive overview of the architectural, structural, and implementation details of the
GEMBOS application, leveraging Elliptic Curve Cryptography (ECC) for encryption, distributed
databases for scalability, and a modular design for flexibility and extensibility.

Main Functions of the GEMBOS System:

1. User Authentication and Account Management:

o Secure login, registration, and logout functionalities.

o Phone number verification through two-factor authentication (2FA) using OTPs.

o Password management, including reset functionality with secure SMS-based verification.

2. Messaging System:

o Support for secure, end-to-end encrypted messages using Elliptic Curve Cryptography
(ECC).

o Offline message storage and synchronization upon reconnection.

o Dual transmission modes (internet-based and SMS-based) for reliable communication.

3. Contact Integration:

o Synchronization of phone contacts with the GEMBOS application.

o Display of synchronized contacts with the ability to initiate secure chats.

4. Distributed Data Storage:

o Centralized RemoteDatabase for real-time message storage.

o Local AppDatabase for offline storage and synchronization.

o Scalable architecture to manage distributed data flow.

5. Notifications:

o In-app and system notifications for new messages, updates, and system events.

o Management of queued notifications for seamless user interaction.

6. Security Features:

o Implementation of handshake protocols for secure key exchanges.

o Encryption and decryption of messages using ECC for enhanced data security.

o Secure storage of encryption keys in platform-specific keystores (Android Keystore and iOS
Keychain).

GEMBOS DSD-v2.0	 	 	 3

Design Basis and Methodology:

 The design of GEMBOS is derived from the GEMBOS Requirements Specification Document (RSD),
Version 1.5, dated January 2025. The design process adheres to established organizational standards and
software development best practices to ensure a secure and efficient system. This DSD document extends the
RSD by providing detailed architectural decisions, component breakdowns, and technical specifications.

 The GEMBOS design methodology emphasizes compliance with ISO/IEC 27001 standards for information
security management. These standards ensure that the system is designed to meet security, scalability, and
usability requirements while maintaining a high level of performance and reliability. Unified Modeling
Language (UML) is used extensively throughout this document to represent the system's architecture,
interactions, and class structures.

By employing UML and adhering to international standards, the GEMBOS design ensures:

1. Security: Robust encryption mechanisms, secure key management, and protection against
unauthorized access.

2. Scalability: Distributed system architecture that supports growth in user base and data volume.

3. Usability: A user-centric design approach for intuitive navigation and seamless user experience.

4. Performance: Efficient message processing and real-time synchronization across devices.

 This DSD document serves as a comprehensive guide for the development and implementation of the
GEMBOS system, ensuring that it aligns with the requirements and goals specified in the RSD while
adhering to industry best practices.

2. GEMBOS System Design

 The GEMBOS system design focuses on the software subsystem, as no specialized hardware components
are required for the development and deployment of this project. This section provides an in-depth overview
of the system, detailing its components and their interactions. The design adopts a distributed architecture to
ensure scalability, maintainability, and extensibility, aligning with the secure and user-friendly principles of
the GEMBOS application.

 The system is visualized using a UML Component Diagram, to represent the key components and their
relationships. The major components include User Interface Modules, Communication Modules, Security
Modules, and Data Management Systems. These components collaboratively enable secure and reliable
messaging within a distributed architecture, ensuring seamless user experience and data integrity.

Key Components and Their Roles

1. User Interface Modules
o SplashScreen: The entry point for the application, responsible for initializing the application

environment and directing the user to the appropriate screen (registration or main menu)
based on their status.

o LoginScreen and RegisterScreen: Handle user authentication and account creation. These
screens interface with the backend through APIClient to validate credentials and register
new users securely.

o MainScreen: Displays synchronized contacts, notifications, and the primary communication
interface for users.

2. Communication Modules
o ChatScreen: Manages user-to-user communication, including real-time message exchange

and offline message handling.
o SmsManager: Handles SMS-based communication when internet connectivity is

unavailable, ensuring uninterrupted messaging capabilities.

GEMBOS DSD-v2.0	 	 	 4

3. Security Modules
o EncryptionManager: Implements Elliptic Curve Cryptography (ECC) for encrypting and

decrypting messages, ensuring secure end-to-end communication.
o Keystore: Manages encryption keys securely, enabling safe storage and retrieval of keys for

message processing.
o APIClient: Acts as the intermediary between the mobile application and the backend,

ensuring secure communication via APIs and handshake protocols.
4. Data Management Systems

o RemoteDatabase: Serves as the centralized storage for user data and messages, enabling
synchronization across devices and maintaining data integrity.

o AppDatabase: Provides local storage for offline functionality, temporarily saving messages
and syncing them with the RemoteDatabase when connectivity is restored.

5. Notification Modules
o NotificationManager: Manages system notifications, alerting users of new messages,

updates, or system events.

Component Interactions

The GEMBOS system is structured around well-defined interactions between components to ensure a
smooth and secure user experience:

• User Authentication:
The SplashScreen interacts with APIClient to validate encryption keys and user credentials, directing
users to the appropriate interface (MainScreen or RegisterScreen) based on their authentication
status.

• Message Exchange:
Messages are encrypted by EncryptionManager using keys stored in the Keystore before being sent
through APIClient to the RemoteDatabase. The ChatScreen displays messages and saves unsent
messages locally via AppDatabase during offline periods.

• Offline Synchronization:
When the internet is restored, AppDatabase interacts with RemoteDatabase through APIClient to
synchronize locally stored messages, ensuring consistency across devices.

• Security Handshake:
A handshake protocol, facilitated by APIClient and EncryptionManager, ensures that secure keys are
exchanged and validated before any data transmission.

• Notification Management:
Notifications are processed by NotificationManager and displayed on the MainScreen for immediate
user attention, enhancing real-time communication.

Design Principles

1. Scalability:
The distributed architecture ensures the system can handle increasing user data and concurrent
messaging operations without performance degradation.

2. Security:
The implementation of ECC, secure key storage, and handshake protocols guarantees end-to-end
encryption and robust data protection.

3. Extensibility:
The modular design allows for the seamless integration of new features, such as advanced analytics
or additional communication channels, without affecting the existing architecture.

4. User-Centric Approach:
The interface design prioritizes ease of use, ensuring that users can navigate the system intuitively
while maintaining secure communication.

 This system design ensures that GEMBOS meets its functional and non-functional requirements while
providing a secure, efficient, and user-friendly messaging platform. The accompanying component diagram
visualizes the relationships between these modules, showcasing the architectural flow of the system.

GEMBOS DSD-v2.0	 	 	 5

Figure 5 Component Diagram of GEMBOS Software System

3. GEMBOS Software Subsystem Design

 As the GEMBOS project is a software-only system, this section focuses exclusively on the design of its
software subsystem, encompassing the entire architecture of the system. Below is a detailed explanation of
the architectural style chosen for the GEMBOS system, along with a justification for the associated design
decisions.

3.1. GEMBOS Software System Architecture

 The GEMBOS system employs a Distributed Layered Architecture, which is well-suited for secure and
scalable communication systems. The architecture is organized into three primary layers, promoting
modularity, separation of concerns, and adaptability to future requirements.

Architecture Layers

1. Presentation Layer

o Role: Handles user interactions and serves as the gateway for accessing the system's
features.

o Technology:

▪ Developed using Java (Android) and Swift (iOS).

▪ Android SDK and Swift UI frameworks for building dynamic, platform-native user
interfaces.

o Features:

▪ Manages user interactions, such as login, registration, message sending, and offline
message viewing.

GEMBOS DSD-v2.0	 	 	 6

▪ Displays data retrieved from the backend using RESTful APIs.

▪ Provides a responsive and user-friendly interface for seamless communication.

2. Application Layer

o Role: Acts as the intermediary between the presentation and data layers, processing business
logic and managing secure communication.

o Technology:

▪ Implemented in Java using the Spring Boot framework.

▪ Integrates secure communication protocols, such as the Elliptic Curve Cryptography
(ECC) algorithm and handshake protocols.

o Features:

▪ Processes user inputs and applies security protocols (e.g., encryption and key
validation).

▪ Manages message handling, including encryption, offline storage, and
synchronization.

▪ Ensures secure communication between the frontend and distributed data layers.

3. Data Layer

o Role: Responsible for persistent data storage, retrieval, and synchronization.

o Technology:

▪ MySQL for relational database management.

▪ Distributed database architecture to support scalability and fault tolerance.

o Features:

▪ Stores user credentials, message history, and encryption keys securely.

▪ Synchronizes offline data with the central RemoteDatabase when connectivity is
restored.

▪ Ensures data integrity and consistency through robust indexing, constraints, and
backup strategies.

Justification for Distributed Layered Architecture

1. Scalability:

o The layered structure enables each layer to scale independently, allowing the system to
handle increasing user traffic and data volumes efficiently.

2. Security:

o The application layer enforces secure communication using ECC, while the data layer
ensures encryption and controlled access, minimizing security risks.

GEMBOS DSD-v2.0	 	 	 7

3. Maintainability:

o Clear separation of concerns between layers facilitates easy debugging, updates, and
integration of new features.

4. Adaptability:

o The architecture accommodates future enhancements, such as advanced analytics, new
communication channels, or additional security protocols.

Design Decisions and Justification

 The design of the GEMBOS system is driven by the requirements for scalability, security, and user-centered
functionality. The following decisions were made to align with these goals:

1. Layered Architecture

o Reason: Promotes modularity and clear separation of responsibilities, allowing independent
development and testing of each layer.

o Benefits: Simplifies debugging and maintenance while facilitating the addition of new
features.

2. Integration of Distributed Systems

o Reason: A distributed database architecture was chosen to ensure fault tolerance and support
for multiple devices.

o Benefits: Enables high availability and consistency of data across users and devices.

3. End-to-End Encryption with ECC

o Reason: ECC provides robust encryption with smaller key sizes, reducing computational
overhead while ensuring data security.

o Benefits: Strengthens privacy and protects against unauthorized access during message
transmission.

4. Scalable Database Design

o Reason: MySQL was selected for its efficiency in handling relational data and support for
distributed architectures.

o Benefits: Facilitates efficient data retrieval and ensures the system can accommodate growth
in user numbers and message volumes.

5. Frontend Technology (Java and Swift)

o Reason: Java and Swift provide platform-native support for Android and iOS, ensuring
optimal performance and user experience.

o Benefits: Delivers a responsive and dynamic interface tailored to the needs of mobile users.

6. Offline Support and Synchronization

o Reason: Local AppDatabase ensures uninterrupted functionality, storing messages locally
when the user is offline.

o Benefits: Enhances user experience by synchronizing messages with the RemoteDatabase
once connectivity is restored.

GEMBOS DSD-v2.0	 	 	 8

 This comprehensive design ensures that GEMBOS meets its functional and non-functional requirements
while providing a robust, secure, and user-friendly messaging platform. The following sections elaborate on
the specific components and their interactions, supported by detailed UML diagrams to illustrate the system
architecture.

3.2. GEMBOS Software System Structure

 The GEMBOS application is structured into interconnected components, ensuring modularity, scalability,
and a secure communication platform. The system architecture is divided into distinct layers: frontend,
backend, and database. Each layer is carefully designed to perform its specific responsibilities efficiently.
This section provides an in-depth explanation of the system’s structure, accompanied by the UI design
illustrations that reflect the user interaction workflows.

Key Components and Their Roles:

Frontend Package

Responsibilities: The frontend serves as the primary point of interaction between the user and the system. It
is responsible for handling input and output operations and ensuring an intuitive and responsive user
interface.

Features:

• User authentication workflows (registration, login, OTP verification).

• Interactive chat interfaces for sending encrypted messages or fallback SMS.

• Real-time updates for profile management and settings.

• Visual indicators for encryption and message delivery modes.

Sub-components and Examples:

1. Welcome and Login Screens:

• The "Welcome" screen provides fields for entering login credentials (email and password),
with an option for password recovery or account creation. This is shown in Figure 6.

GEMBOS DSD-v2.0	 	 	 9

Figure 6 Login Screen

• The "Forgot Password" and "Verification" screens guide the user through OTP verification
steps for account recovery (Figures 7 and 8). These ensure secure password resets.

GEMBOS DSD-v2.0	 	 	 10

Figure 7 Forgot Password Screen

GEMBOS DSD-v2.0	 	 	 11

Figure 8 Verification Screen

GEMBOS DSD-v2.0	 	 	 12

2. Main Messaging Interface:

• The primary messaging screen (Figure 9) displays conversations with distinct formatting for
encrypted and SMS-based messages. For example, messages sent over SMS are labeled with
"SMS" in green, as seen in design.

• This interface also includes real-time updates for contact status and allows users to send
attachments securely.

GEMBOS DSD-v2.0	 	 	 13

Figure 9 Messaging Interface

3. Inbox View:

• The inbox view (Figure 10) organizes all active conversations in a compact list, with
indicators for unread messages and timestamps for activity.

GEMBOS DSD-v2.0	 	 	 14

Figure 10 Inbox Screen

GEMBOS DSD-v2.0	 	 	 15

4. Profile and Settings Management:
• The "Edit Profile" screen allows users to update personal details like username, bio,

and profile picture (Figure 11).
• The "Settings" screen offers account management options, privacy settings, and

logout functionality (Figure 12).

Figure 11 Edit Profile

GEMBOS DSD-v2.0	 	 	 16

Figure 12 Settings Screen

Backend Package

Responsibilities:
The backend is the core of the system, managing all business logic and interactions between the

GEMBOS DSD-v2.0	 	 	 17

frontend and database layers. It ensures secure encryption for messages and facilitates
communication with external APIs for key validation and message synchronization.

Features:

• Implements Elliptic Curve Cryptography (ECC) for secure message encryption.

• Processes user authentication and session management.

• Handles the transmission and synchronization of messages, even in offline scenarios.

Sub-components:

1. Message Service:

o Encrypts outgoing messages and decrypts incoming ones.

o Fallback mechanism to send messages via SMS when the internet is unavailable.

2. User Service:

o Handles user authentication, including login, logout, and registration workflows.

o Manages user profile updates and settings modifications.

3. Notification Service:

o Sends real-time notifications to the frontend for events such as new messages or updates.

Illustrative UI Integration:

• The backend operations directly support UI elements such as the real-time notifications shown
in Figure 9 (Messaging Interface).

Database Package

Responsibilities:
The database layer is responsible for secure and persistent data storage. It manages all structured
data, including user profiles, messages, and system logs.

Features:

• Ensures data security through encrypted storage of sensitive information like passwords and
messages.

• Supports offline access with local caching of messages.

Sub-components:

1. Remote Database:

o Centralized storage for all user and message data, ensuring consistency across devices.

2. App Database:

o Temporarily stores offline messages for synchronization when the internet is restored.

Illustrative UI Integration:

GEMBOS DSD-v2.0	 	 	 18

• Offline message storage is reflected in Figure 9 (Messaging Interface), where messages sent offline
are labeled and synced later.

3.3. GEMBOS Software System Environment

 The GEMBOS software subsystem is engineered to function in a robust and distributed environment,
leveraging modern hardware, advanced system software, and middleware technologies to ensure optimal
scalability, reliability, and security. This section provides a comprehensive overview of the target software
environment, development tools, and supporting middleware.

3.3.1 System Software Environment

 The software environment of the GEMBOS system comprises the backend, frontend, database, and
middleware technologies that collectively support its distributed architecture and secure messaging features.

1. Backend
• Programming Language:

o Java (primary language for Android-compatible backend functionality).
o Swift (primary language for iOS-compatible backend functionality).

• Frameworks:
o Spring Boot: A lightweight, scalable, and secure framework for RESTful API development.

• APIs:
o Elliptic Curve Cryptography API: Ensures secure key exchange for encrypted

communications.
o AES Encryption Algorithms: Used for encrypting and decrypting sensitive data.

• Security Layers:
o Key management using Android Keystore and iOS Keychain.
o Secure Transmission via SSL/TLS for all API communications.

• Message Processing:
o Utilizes distributed microservices for message storage, key validation, and data encryption.

2. Frontend
• Programming Languages:

o JavaScript/TypeScript for frontend scripting.
o Java for Android app development.
o Swift for iOS app development.

• Frameworks:
o Android and iOS SDK’S: For creating native mobile apps user interfaces with real-time

responsiveness.
o SpringBoot: For server-side rendering and optimizing performance.

• Styling:
o Tailwind CSS: For modern, responsive, and dynamic UI design.
o Bootstrap 5: To ensure consistent design across platforms.

• UI Features:
o Includes dynamic components for login, messaging, contact sync, and profile editing (refer

to Figures 6–12 for detailed UI representations).
o Integrated with the backend via secure API calls to fetch data and submit user inputs.

3. Database
• Database Management System:

o MySql: Selected for its performance, scalability, and support for complex queries.
• Key Features:

o Support for relational and non-relational data to handle structured and unstructured data
(e.g., user profiles, messages, encryption keys).

o Advanced indexing for rapid data retrieval.
• Replication:

o Uses master-slave replication to ensure high availability in a distributed environment.
• Security Features:

o Data encryption at rest using Elliptic Curve.
o Regular backups and recovery processes for data integrity.

GEMBOS DSD-v2.0	 	 	 19

3.3.2 Development Tools

 The GEMBOS development process employs a range of modern tools and platforms to facilitate efficient
development, debugging, testing, and deployment.

1. Integrated Development Environment (IDE):
o IntelliJ IDEA: For Java-based backend development.
o Xcode: For Swift development in iOS.
o Android Studio: For Android app development.
o Visual Studio Code: For frontend scripting and API integrations.

2. Version Control:
o Git: For source code management.
o GitHub: Central repository for collaborative development and issue tracking.

3. Testing Tools:
o Postman: For testing RESTful API endpoints.
o Selenium: For automating user interface tests.

4. CI/CD Pipeline:
o GitHub Actions: For continuous integration and automated testing before deployment.
o Docker: Containerization for deployment in distributed environments.

3.3.3 Middleware and Supporting Software

 To ensure smooth interaction between the frontend, backend, and database, the GEMBOS system employs
advanced middleware for secure, efficient, and scalable communication.

1. Authentication:
o JSON Web Tokens (JWT): For user authentication and session management.

2. Data Validation:
o express-validator: Ensures that all user inputs (e.g., messages, profile updates) meet

specified validation rules.
3. Data Parsing:

o express.json(): For parsing incoming JSON requests.
o express.urlencoded(): For parsing form submissions.

4. Error Handling:
o Custom middleware in Spring Boot to handle errors and provide user-friendly feedback.

5. Caching:
o Redis: For storing frequently accessed data to reduce database load and improve response

time.
6. Message Queue:

o RabbitMQ: For asynchronous communication between distributed components, ensuring
reliable message delivery.

7. Distributed File Storage:
o Amazon S3: For storing and retrieving media files (e.g., profile pictures).

3.3.4 Justification for Environment Choices

 The selected tools and frameworks for GEMBOS are based on their compatibility with distributed systems,
performance, and scalability requirements:

1. Modern Frameworks:
o Android , iOS and Spring Boot were chosen for their ability to handle application

development and scalable backend operations.
2. Secure Middleware:

o Tools like JWT and Redis enhance system security and performance by ensuring secure
authentication and efficient caching.

3. Database Performance:
o MYSql advanced indexing and master-slave replication ensure fast, reliable, and scalable

data storage.

GEMBOS DSD-v2.0	 	 	 20

4. GEMBOS Software System Detailed Design:

 4.0.1 Application Lifecycle Overview
	 4.0.1.1 Android Lifecycle Methods

• onCreate() - Initializes API Client, Keystore, and Database.
• onStart() - Checks connectivity and retrieves pending updates.
• onResume() - Resumes sessions and updates UI.
• onPause() - Saves drafts and temporary data.
• onStop() - Releases resources.
• onDestroy() - Cleans up background tasks.

	 4.0.1.2 iOS Lifecycle Methods
• application(_:didFinishLaunchingWithOptions:) - Initializes core modules.
• applicationWillEnterForeground - Syncs and restores UI.
• applicationDidBecomeActive - Displays notifications, resumes secure session.
• applicationWillResignActive - Saves unsent data.
• applicationDidEnterBackground - Encrypts and syncs.
• applicationWillTerminate - Persists app state and clears memory.

4.1 Main Module: SplashScreen
• fetchKey() - Retrieves ECC key from server.
• navigateToNextScreen() - Determines next activity based on login status.

4.2 Subsystem S1: User Management
	 Modules: LoginScreen, RegisterScreen

• registerNewUser() - Registers users via phone/email + SSID
• acceptKVKK() - Logs KVKK consent
• loginUser() - Authenticates credentials
• logoutUser() - Ends session and clears token

4.3 Subsystem S2: Messaging
	 Modules: MainScreen, ChatScreen, MessageManager, SmsManager

• sendMessage() - Sends message via internet or SMS
• receiveMessage() - Receives incoming message
• hashMessage() - Hashes content for integrity
• verifyHash() - Validates received hash
• sendSMS() - Uses Android/iOS SMS APIs
• performKeyExchangeWithDiffieHellman() - Establishes secure channel
• saveMessageLocally() - Stores message if offline
• syncOfflineMessages() - Sends stored messages later

4.4 Subsystem S3: Key and Encryption Handling
	 Modules: EncryptionManager, ApplicationKeystore

• generateEllipticCurveKeyPair () - Creates ECC key pair
• encryptMessageWithKey() - Encrypts plaintext
• decryptMessageWithKey() - Decrypts ciphertext
• storeKey() - Saves key securely
• retrieveKey() - Loads key
• verifyEllipticCurveKey() - Ensures key validity

4.5 Subsystem S4: Notifications and Sync
	 Modules: NotificationManager

• showNotification() - Displays push/in-app alert
• scheduleNotification() - Schedules based on task or event
• triggerSync() - Syncs when internet connection established again

5. Testing Design

GEMBOS DSD-v2.0	 	 	 21

 The testing design for the GEMBOS system is structured to ensure the application is reliable, secure, and
user-friendly. A combination of unit testing, integration testing, and user acceptance testing (UAT) will
be utilized to validate the system’s functionality, performance, and usability.

5.1 Unit Testing

 Unit testing will be conducted to validate the individual components of the system in isolation. Each class,
method, and function will be tested to ensure they behave as expected under various scenarios.

Scope:
• Validation of encryption and decryption methods in the EncryptionManager.
• Testing secure key storage and retrieval mechanisms in the Keystore.
• Ensuring proper functioning of the APIClient methods, such as fetchKey() and sendMessage().
• Verifying the logic in SmsManager for sending and receiving SMS.
• Testing backend services, including the user registration and login workflows.

Tools:
• JUnit for backend components.
• Karma for frontend unit testing.

5.2 Integration Testing

 Integration testing will verify seamless interactions between different modules, ensuring that the system
works cohesively.

Scope:
• Validation of interactions between the MainScreen, ChatScreen, and APIClient.
• Testing database operations, including storing and retrieving messages from RemoteDatabase.
• Ensuring correct API calls from the frontend to the backend for user authentication and message

synchronization.
• Checking the communication flow between the NotificationManager and the frontend UI to display

real-time alerts.
Tools:

• Postman for API endpoint testing.
• Spring Test for integration testing of backend services.

5.3 User Acceptance Testing (UAT)

 UAT will be conducted to confirm the system meets the expectations and requirements of end-users. Test
scenarios will simulate real-world use cases to ensure functionality and usability.

Scope:
• Verifying the usability of the Inbox, Chat, and Profile Management features (Figures 2, 5, and 6).
• Testing the registration and login process (Figures 9 and 10) for a smooth user experience.
• Ensuring the encryption and messaging workflows are seamless and secure.
• Evaluating the responsiveness of the UI across various devices.

Methods:
• Engaging beta testers to provide feedback on the application's functionality.
• Simulating network disruptions to validate offline messaging and synchronization workflows.
• Testing accessibility features such as color contrast and font sizes for readability.

5.4 Justification for Testing Approach

 The combination of unit testing, integration testing, and UAT ensures a comprehensive validation of the
GEMBOS system:

• Unit testing ensures that individual components are robust and error-free.
• Integration testing guarantees that modules interact seamlessly, supporting the distributed system

architecture.
• User acceptance testing validates that the application meets user needs and provides an intuitive,

secure experience.

GEMBOS DSD-v2.0	 	 	 22

By employing these methods, the GEMBOS system is ensured to meet its goals of reliability, security, and
user satisfaction.

References

1. GEMBOS Requirements Specification Document (RSD).

GEMBOS DSD-v2.0	 	 	 23

	Revision History
	Table of Contents
	1. Introduction
	2. GEMBOS System Design
	3. GEMBOS Software Subsystem Design
	3.1. GEMBOS Software System Architecture
	3.2. GEMBOS Software System Structure
	3.3. GEMBOS Software System Environment
	4. GEMBOS Software System Detailed Design:
	4.0.1 Application Lifecycle Overview
	4.0.1.1 Android Lifecycle Methods
	4.0.1.2 iOS Lifecycle Methods
	4.1 Main Module: SplashScreen
	4.2 Subsystem S1: User Management
	4.3 Subsystem S2: Messaging
	4.4 Subsystem S3: Key and Encryption Handling
	4.5 Subsystem S4: Notifications and Sync
	5. Testing Design
	References

